4 research outputs found

    Impact of high-order tidal terms on binary neutron-star waveforms

    Full text link
    GW170817, the milestone gravitational-wave event originated from a binary neutron star merger, has allowed scientific community to place a constraint on the equation of state of neutron stars by extracting the leading-order, tidal-deformability term from the gravitational waveform. Here we incorporate tidal corrections to the gravitational-wave phase at next-to-leading and next-to-next-to-leading order, including the magnetic tidal Love numbers, tail effects, and the spin-tidal couplings recently computed in Tiziano Abdelsalhin [Phys. Rev. D 98, 104046 (2018)]. These effects have not yet been included in the waveform approximants for the analysis of GW170817. We provide a qualitative and quantitative analysis of the impact of these new terms by studying the parameter bias induced on events compatible with GW170817 assuming second-generation (advanced LIGO) and third-generation (Einstein Telescope) ground-based gravitational-wave interferometers. We find that including the tidal-tail term deteriorates the convergence properties of the post-Newtonian expansion in the relevant frequency range. We also find that the effect of magnetic tidal Love numbers could be measurable for an optimal GW170817 event with signal-to-noise ratio ρ1750\rho \approx 1750 detected with the Einstein Telescope. On the same line, spin-tidal couplings may be relevant if mildly high-spin χ0.1\chi \gtrsim 0.1 neutron star binaries exist in nature.Comment: Published version: More optimistic conclusion about detectability due to higher projected SN

    Quasi-normal modes and their overtones at the common horizon in a binary black hole merger

    Get PDF
    It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with frequencies and damping times given by the quasi-normal mode spectrum of the final Kerr black hole. An observational test of this scenario, often referred to as black hole spectroscopy, is one of the major goals of gravitational wave astronomy. It was recently suggested that the quasi-normal mode description including the higher overtones might hold even right after the remnant black hole is first formed. At these times, the black hole is expected to be highly dynamical and non-linear effects are likely to be important. In this paper we investigate this remarkable scenario in terms of the horizon dynamics. Working with high accuracy simulations of a simple configuration, namely the head-on collision of two non-spinning black holes with unequal masses, we study the dynamics of the final common horizon in terms of its shear and its multipole moments. We show that they are indeed well described by a superposition of ringdown modes as long as a sufficiently large number of higher overtones are included. This description holds even for the highly dynamical final black hole shortly after its formation. We discuss the implications and caveats of this result for black hole spectroscopy and for our understanding of the approach to equilibrium.Comment: 26p., 21 figures, 1 table. To be submitted. Comments welcom

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
    corecore